High-resource Language-specific Training for Multilingual Neural Machine Translation

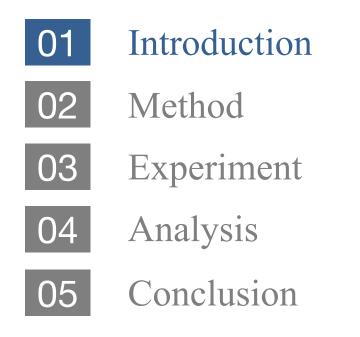
Jian Yang¹, Yuwei Yin², Shuming Ma², Dongdong Zhang², Zhoujun Li¹, Furu Wei²

¹State Key Lab of Software Development Environment,

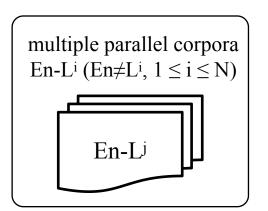
Beihang University, Beijing, China

²Microsoft Research Asia

Outline

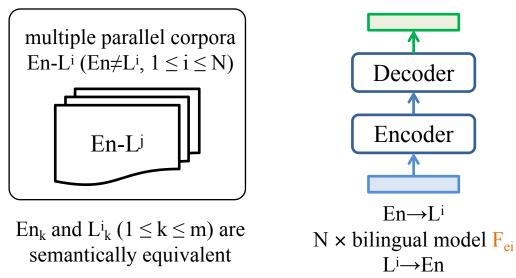


Given English-centric parallel corpora En-Lⁱ ($L^i \neq En, 1 \le i \le N$)



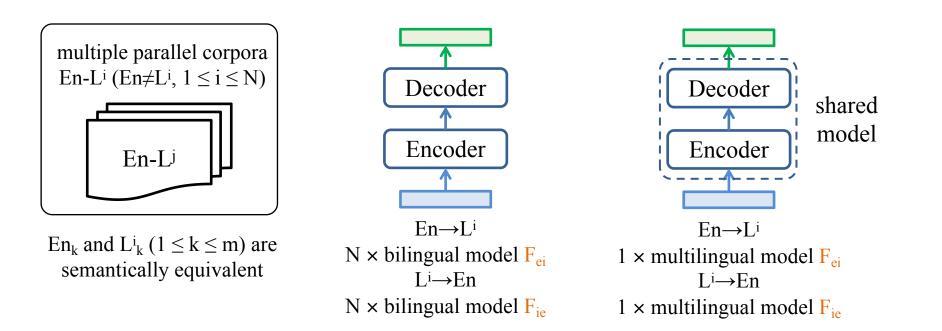
 En_k and L^i_k $(1 \le k \le m)$ are semantically equivalent

Given English-centric parallel corpora En-Lⁱ ($L^i \neq En, 1 \le i \le N$) Typically, we can train **2N bilingual** models

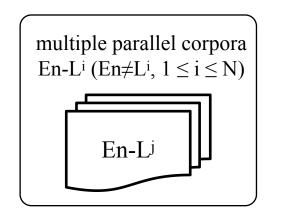


 $N \times bilingual \mod F_{ie}$

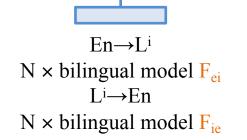
Given English-centric parallel corpora En-Lⁱ ($L^i \neq En$, $1 \le i \le N$) Typically, we can train 2N bilingual models, or **2 multilingual** models.



Given English-centric parallel corpora En-Lⁱ ($L^i \neq En$, $1 \le i \le N$) Typically, we can train 2N bilingual models, or **1 multilingual** models.

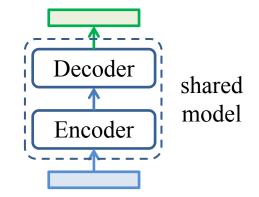


 En_k and L^i_k ($1 \le k \le m$) are semantically equivalent



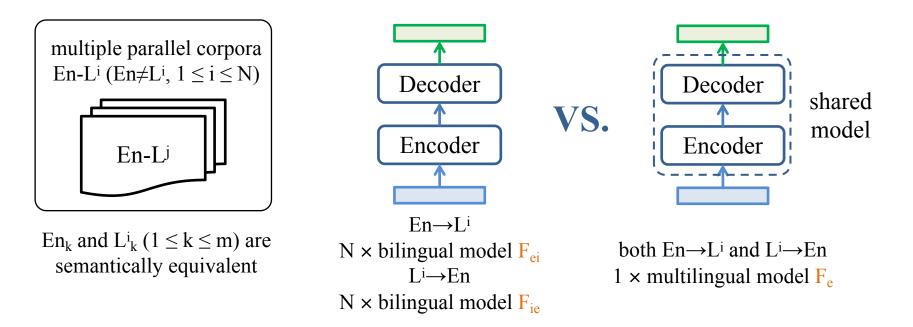
Decoder

Encoder

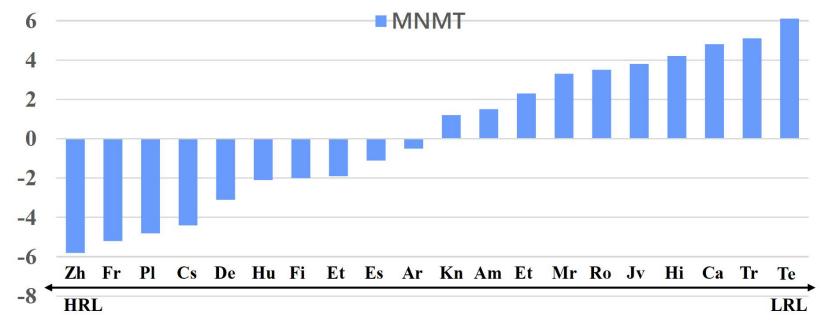


both $En \rightarrow L^i$ and $L^i \rightarrow En$ 1 × multilingual model F_e

Given English-centric parallel corpora En-Lⁱ ($L^i \neq En, 1 \le i \le N$) Typically, we can train 2N bilingual models, or 1 multilingual models. Which model is better on each En $\rightarrow L^i$ and $L^i \rightarrow En$ direction?

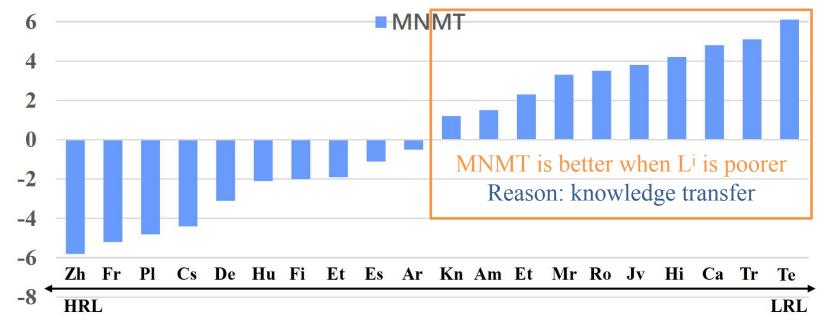


It depends on the **richness** of language Lⁱ **HRL**: High-Resource Language; **LRL**: Low-Resource Language



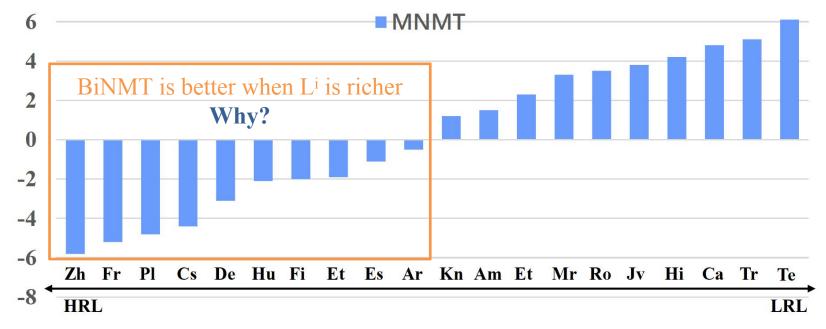
 Δ BLEU socre between MNMT and BiNMT on En \rightarrow Lⁱ and Lⁱ \rightarrow En (averaged)

It depends on the **richness** of language Lⁱ **HRL**: High-Resource Language; LRL: Low-Resource Language



 Δ BLEU socre between MNMT and BiNMT on En \rightarrow Lⁱ and Lⁱ \rightarrow En (averaged)

It depends on the **richness** of language Lⁱ **HRL**: High-Resource Language; LRL: Low-Resource Language



 Δ BLEU socre between MNMT and BiNMT on En \rightarrow Lⁱ and Lⁱ \rightarrow En (averaged)

Negative Language Interference

Different directions conflict with each other to various extents.

cs de fi lv et ro hi tr gu The less gradient similarity, 1.0 fr the darker the color, CS · the more negative interference. 0.8 de HRL fi 0.6 Negative lv et · Interference 0.4 ro hi - 0.2 LRL tr gu 0.0 cosine similarities between

gradients of two translation directions

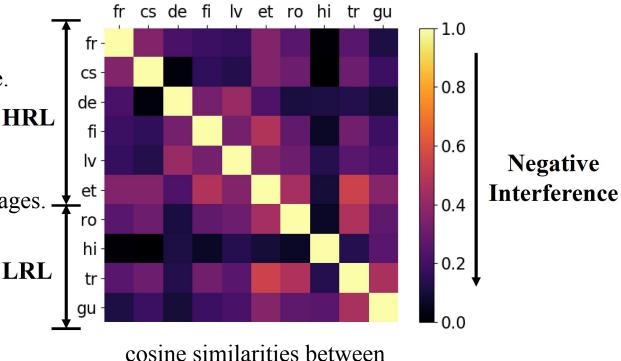
Negative Language Interference

Different directions conflict with each other to various extents.

The less gradient similarity, the darker the color, the more negative interference.

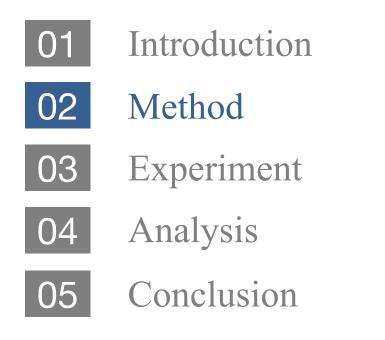
Our Goals

- I. Mitigate the negative interference among languages.
- II. Prevent the HRL from negative interference introduced by LRL.
- III. Retain high translation quality of all directions.

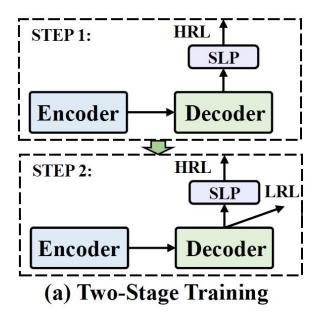


gradients of two translation directions

Outline



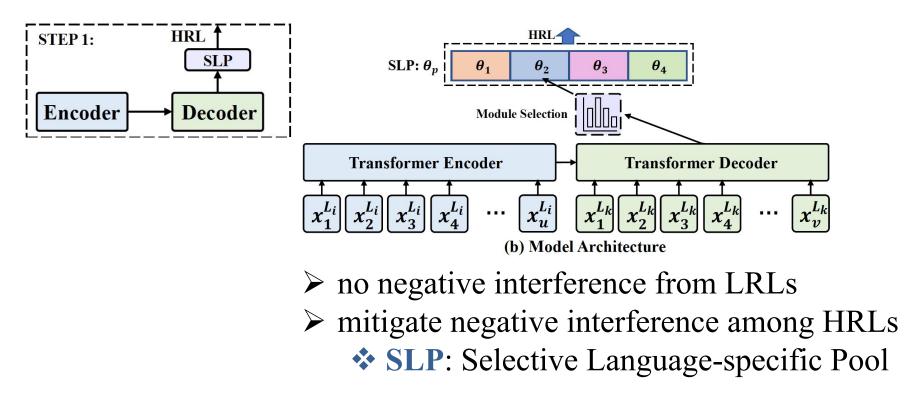
Two-Stage Traning



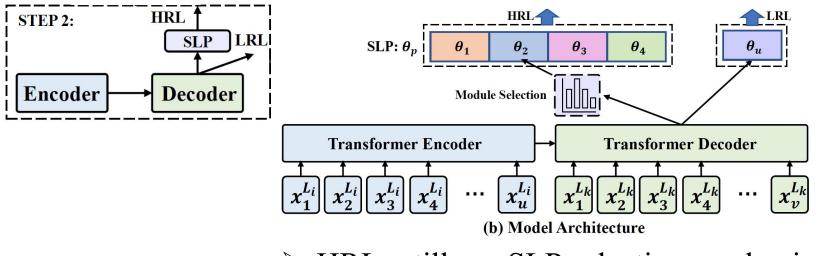
Step 1: train a MNMT model on HRLs

Step 2: continue training the model on all pairs

Step 1: train a MNMT model on HRLs

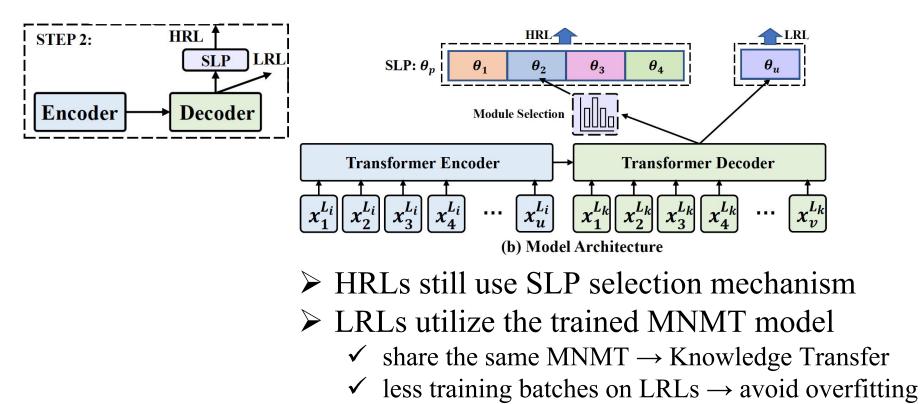


Step 2: continue training on all pairs (HRLs & LRLs)

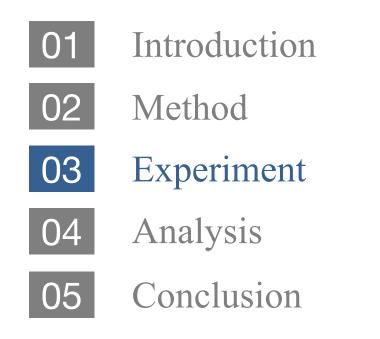


HRLs still use SLP selection mechanism
 LRLs utilize the trained MNMT model

Step 2: continue training on all pairs (HRLs & LRLs)



Outline



Dataset

WMT-10: En-X (X in {Fr, Cs, De, Fi, Lv, Et, Ro, Hi, Tr, Gu}) HRLs: Fr, Cs, De, Fi, Lv, and Et; LRLs: Ro, Hi, Tr, and Gu

Code	Language	#Bitext	Training	Valid	Test
Fr	French	10 M	WMT15	Newstest13	Newstest15
Cs	Czech	10M	WMT19	Newstest16	Newstest18
De	German	4.6M	WMT19	Newstest16	Newstest18
Fi	Finnish	4.8M	WMT19	Newstest16	Newstest18
Lv	Latvian	1.4M	WMT17	Newsdev17	Newstest17
Et	Estonian	0.7M	WMT18	Newsdev18	Newstest18
Ro	Romanian	0.5M	WMT16	Newsdev16	Newstest16
Hi	Hindi	0.26M	WMT14	Newsdev14	Newstest14
Tr	Turkish	0.18M	WMT18	Newstest16	Newstest18
Gu	Gujarati	0.08M	WMT19	Newsdev19	Newstest19

OPUS-100: 94 En-X pairs: 95 langs including En, except 5 langs w/o valid/test sets High-resource: 45 pairs; Medium-resource: 21 pairs; Low-resource: 28 pairs.

Baseline

- 1. BiNMT: bilingual Transformer model
- 2. MNMT: multilingual Transformer model trained on all directions
- 3. mBART: multilingual BART (denoising autoencoder for pretraining seq-to-seq models) model, fine-tuned on all directions
- 4. XLM-R: pretained Transformer-based masked language model on 100 languages
- 5. LS-MNMT: language-specific many-to-many multilingual model trained on 100 languages

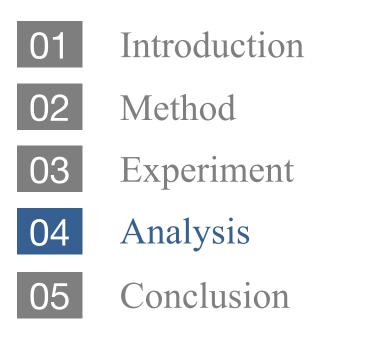
Architecture of all experiments: Transformer

```
learning rate: 5e-4
warmup steps: 4000
optimizer: Adam (\beta_1 = 0.9, \beta_2 = 0.98)
mini-batch size: 4096 tokens
loss: label smoothing cross-entropy (smoothing ratio = 0.1)
```

training device: 64 Tesla V100 GPUs

Evaluation Metrics: the case-sensitive detokenized BLEU using sacreBLEU BLEU+case.mixed+lang. {src}-{tgt}+numrefs.1+smooth.exp+tok.13a+version.1.3.1

Outline



Experimental Results: WMT-10

En \rightarrow X on WMT-10: 1 \rightarrow 1 (bilingual), 1 \rightarrow N (one-to-many), N \rightarrow N (many-to-many) models

$En \rightarrow X$	test sets	#Params	Fr	Cs	De	Fi	Lv	Et	Ro	Hi	Tr	Gu	Avg _{all}
$1 \rightarrow 1$	BiNMT [Vaswani et al., 2017]	242M/10M	36.3	22.3	40.2	15.2	16.5	15.0	23.0	12.2	13.3	7.9	20.2
1→N	MNMT [Johnson <i>et al.</i> , 2017] mBART [Liu <i>et al.</i> , 2020] XLM-R [Conneau <i>et al.</i> , 2020] LS-MNMT [Fan <i>et al.</i> , 2020] HLT-MT (Our method)	242M 611M 362M 409M 381M	34.2 33.7 34.7 35.0 36.2	20.9 20.8 21.5 21.7 22.2	40.0 38.9 40.1 40.6 41.8	15.0 14.5 15.2 15.5 16.6	18.1 18.2 18.6 18.9 19.5	20.9 20.5 20.8 21.0 21.1	26.0 26.0 26.4 26.2 26.6	14.5 15.3 15.6 14.8 15.8	17.3 16.8 17.4 16.5 17.1	13.2 12.9 14.9 12.8 14.6	22.0 21.8 22.5 22.3 23.2
N→N	MNMT [Johnson <i>et al.</i> , 2017] mBART [Liu <i>et al.</i> , 2020] XLM-R [Conneau <i>et al.</i> , 2020] LS-MNMT [Fan <i>et al.</i> , 2020] HLT-MT (Our method)	242M 611M 362M 409M 381M	34.2 32.4 34.2 34.8 35.8	21.0 19.0 21.4 21.1 22.4	39.4 37.0 39.7 39.3 41.5	15.2 13.2 15.3 15.2 16.3	18.6 17.0 18.9 18.7 19.6	20.4 19.5 20.6 20.5 21.0	26.1 25.1 26.5 26.3 26.6	15.1 15.7 15.6 14.9 15.7	17.2 16.7 17.5 17.3 17.6	13.1 14.2 14.5 12.3 14.7	22.0 21.0 22.4 22.0 23.1

HRLs LRLs

- ➢ significantly outperform BiNMT on LRLs, yet retain high perfomance on HRLs
- clear improvement over previous multilingual baselines on HRLs and LRLs
- ➤ the extra model parameters for our SLP pool and Universal layer are modest

Experimental Results: WMT-10

En \rightarrow X on WMT-10: 1 \rightarrow 1 (bilingual), 1 \rightarrow N (one-to-many), N \rightarrow N (many-to-many) models

$En \rightarrow X$	En \rightarrow X test sets		Fr	Cs	De	Fi	Lv	Et	Ro	Hi	Tr	Gu	Avg _{all}
$1 \rightarrow 1$	BiNMT [Vaswani et al., 2017]	242M/10M	36.3	22.3	40.2	15.2	16.5	15.0	23.0	12.2	13.3	7.9	20.2
1→N	MNMT [Johnson <i>et al.</i> , 2017] mBART [Liu <i>et al.</i> , 2020] XLM-R [Conneau <i>et al.</i> , 2020] LS-MNMT [Fan <i>et al.</i> , 2020] HLT-MT (Our method)	242M 611M 362M 409M 381M	34.2 33.7 34.7 35.0 36.2	20.9 20.8 21.5 21.7 22.2	40.0 38.9 40.1 40.6 41.8	15.0 14.5 15.2 15.5 16.6	18.1 18.2 18.6 18.9 19.5	20.9 20.5 20.8 21.0 21.1	26.0 26.0 26.4 26.2 26.6	14.5 15.3 15.6 14.8 15.8	17.3 16.8 17.4 16.5 17.1	13.2 12.9 14.9 12.8 14.6	22.0 21.8 22.5 22.3 23.2
N→N	MNMT [Johnson <i>et al.</i> , 2017] mBART [Liu <i>et al.</i> , 2020] XLM-R [Conneau <i>et al.</i> , 2020] LS-MNMT [Fan <i>et al.</i> , 2020] HLT-MT (Our method)	242M 611M 362M 409M 381M	34.2 32.4 34.2 34.8 35.8	21.0 19.0 21.4 21.1 22.4	39.4 37.0 39.7 39.3 41.5	15.2 13.2 15.3 15.2 16.3	18.6 17.0 18.9 18.7 19.6	20.4 19.5 20.6 20.5 21.0	26.1 25.1 26.5 26.3 26.6	15.1 15.7 15.6 14.9 15.7	17.2 16.7 17.5 17.3 17.6	13.1 14.2 14.5 12.3 14.7	22.0 21.0 22.4 22.0 23.1

HRLs LRLs

➢ significantly outperform BiNMT on LRLs, yet retain high perfomance on HRLs

- clear improvement over previous multilingual baselines on HRLs and LRLs
- ➤ the extra model parameters for our SLP pool and Universal layer are modest

Experimental Results: WMT-10

En \rightarrow X on WMT-10: 1 \rightarrow 1 (bilingual), 1 \rightarrow N (one-to-many), N \rightarrow N (many-to-many) models

$En \rightarrow X$	test sets	#Params	Fr	Cs	De	Fi	Lv	Et	Ro	Hi	Tr	Gu	Avg _{all}
$1 \rightarrow 1$	BiNMT [Vaswani et al., 2017]	242M/10M	36.3	22.3	40.2	15.2	16.5	15.0	23.0	12.2	13.3	7.9	20.2
1→N	MNMT [Johnson <i>et al.</i> , 2017] mBART [Liu <i>et al.</i> , 2020] XLM-R [Conneau <i>et al.</i> , 2020] LS-MNMT [Fan <i>et al.</i> , 2020] HLT-MT (Our method)	242M 611M 362M 409M 381M	34.2 33.7 34.7 35.0 36.2	20.9 20.8 21.5 21.7 22.2	40.0 38.9 40.1 40.6 41.8	15.0 14.5 15.2 15.5 16.6	18.1 18.2 18.6 18.9 19.5	20.9 20.5 20.8 21.0 21.1	26.0 26.0 26.4 26.2 26.6	14.5 15.3 15.6 14.8 15.8	17.3 16.8 17.4 16.5 17.1	13.2 12.9 14.9 12.8 14.6	22.0 21.8 22.5 22.3 23.2
N→N	MNMT [Johnson <i>et al.</i> , 2017] mBART [Liu <i>et al.</i> , 2020] XLM-R [Conneau <i>et al.</i> , 2020] LS-MNMT [Fan <i>et al.</i> , 2020] HLT-MT (Our method)	242M 611M 362M 409M 381M	34.2 32.4 34.2 34.8 35.8	21.0 19.0 21.4 21.1 22.4	39.4 37.0 39.7 39.3 41.5	15.2 13.2 15.3 15.2 16.3	18.6 17.0 18.9 18.7 19.6	20.4 19.5 20.6 20.5 21.0	26.1 25.1 26.5 26.3 26.6	15.1 15.7 15.6 14.9 15.7	17.2 16.7 17.5 17.3 17.6	13.1 14.2 14.5 12.3 14.7	22.0 21.0 22.4 22.0 23.1

HRLs LRLs

➢ significantly outperform BiNMT on LRLs, yet retain high perfomance on HRLs

- clear improvement over previous multilingual baselines on HRLs and LRLs
- ➤ the extra model parameters for our SLP pool and Universal layer are modest

Experimental Results: OPUS-100

X \rightarrow En and En \rightarrow X on OPUS-100: N \rightarrow N (many-to-many) models

Models (N \rightarrow N)	#Params	X→En					En→X				
		High ₄₅	Med_{21}	Low_{28}	Avg ₉₄	WR	High ₄₅	Med_{21}	Low_{28}	Avg ₉₄	WR
Previous Best System [Zhang et al., 2020]	254M	30.3	32.6	31.9	31.4	-	23.7	25.6	22.2	24.0	-
MNMT [Johnson et al., 2017]	242M	32.3	35.1	35.8	33.9	ref	26.3	31.4	31.2	28.9	ref
XLM-R [Conneau et al., 2020]	362M	33.1	35.7	36.1	34.6	2	26.9	31.9	31.7	29.4	_
LS-MNMT [Fan <i>et al.</i> , 2020]	456M	33.4	35.8	35.9	34.7	-	27.5	31.6	31.5	29.6	-
HLT-MT (Our method)	381M	34.2	36.7	36.1	35.3	75.5	27.6	33.3	31.8	30.1	78.7

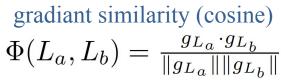
➤ consistently outperform previous multilingual baselines on high/medium/low resource language pairs (both X→En and En→X directions)

XLM-R	Two-stage Training	SLP	Avg _{high}	Avg _{low}	Avg _{all}
			24.9	17.8	22.0
		121	25.4	18.0	22.4
		1	26.0	18.1	22.8
			25.2	18.5	22.5
			26.0	17.9	22.8
\checkmark	\checkmark	1	26.2	18.5	23.2

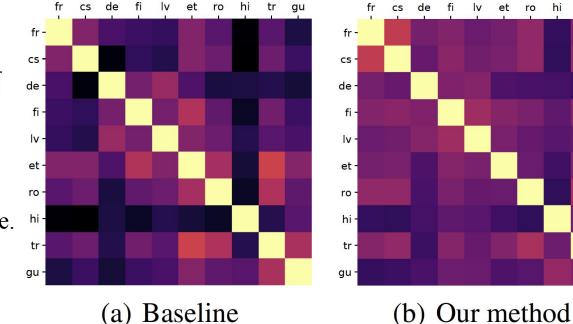
XLM-R initialization, Two-stage Training strategy, and SLP selective mechanism are all beneficial.

Conflicting Gradient

tr gu



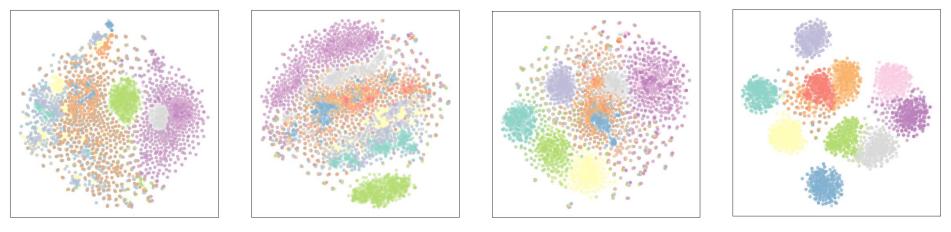
The less gradient similarity, the darker the color, the more negative interference.



clearly mitigate the negative interference among most directions

Decoder Representation Visualization

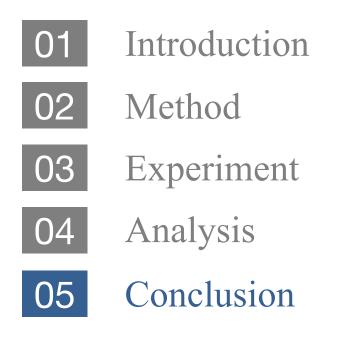
The t-SNE visualization of 500 random English sentences (hidden states of Decoder), ordered from the bottom decoder layer to the top layer. (a, b, c in Decoder, d in SLP)



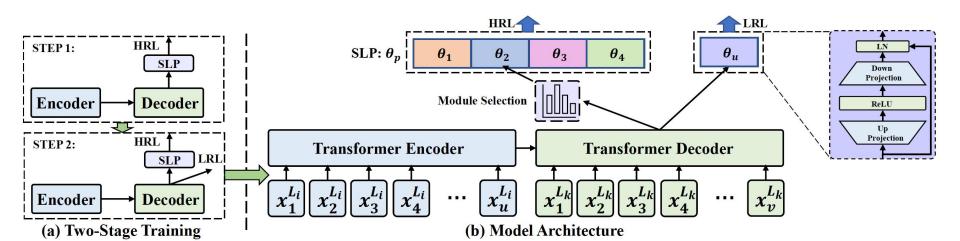
(a) 2-th (b) 3-th (c) 6-th (d) 7-th

different languages become more distinct and less likely to overlap with each other
 SLP effectively projects the language-shared representations into language-distinct ones for better target language generation.

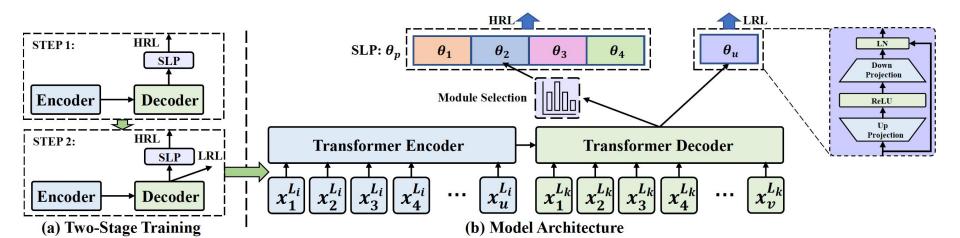
Outline



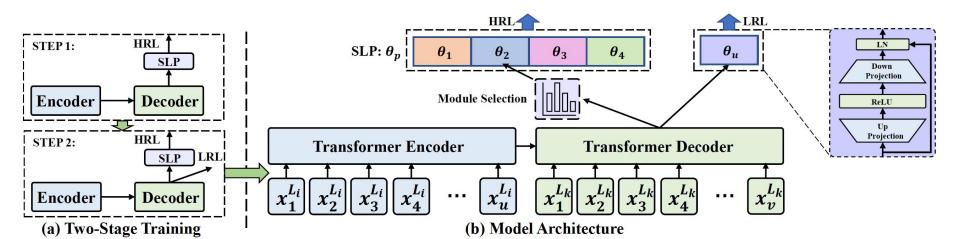
✓ In this work, we propose a novel multilingual translation model with the high-resource language-specific training called HLT-MT.



- ✓ In this work, we propose a novel multilingual translation model with the high-resource language-specific training called HLT-MT.
- ✓ The proposed two-stage training strategy and selective language-specific pool (SLP) mitigate the negative inference among different directions.



- ✓ In this work, we propose a novel multilingual translation model with the high-resource language-specific training called HLT-MT.
- ✓ The proposed two-stage training strategy and selective language-specific pool (SLP) mitigate the negative inference among different directions.
- ✓ Experimental results evaluated on WMT-10 and OPUS-100 benchmarks demonstrate that HLT-MT significantly outperforms all previous baselines.



- ✓ In this work, we propose a novel multilingual translation model with the high-resource language-specific training called HLT-MT.
- ✓ The proposed two-stage training strategy and selective language-specific pool (SLP) mitigate the negative inference among different directions.
- ✓ Experimental results evaluated on WMT-10 and OPUS-100 benchmarks demonstrate that HLT-MT significantly outperforms all previous baselines.

- ✓ Our **code** has been released
 - https://github.com/YuweiYin/HLT-MT

- ✓ In this work, we propose a novel multilingual translation model with the high-resource language-specific training called HLT-MT.
- ✓ The proposed two-stage training strategy and selective language-specific pool (SLP) mitigate the negative inference among different directions.
- ✓ Experimental results evaluated on WMT-10 and OPUS-100 benchmarks demonstrate that HLT-MT significantly outperforms all previous baselines.

- ✓ Our **code** has been released
 - https://github.com/YuweiYin/HLT-MT

Thanks!