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Multilingual NMT models can translate from multiple source languages, 
but typically handle one source sentence per time
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Translating from multiple source sentences 
brings improvements
Multi-source NMT [Och and Ney, 2001; Zoph and Knight, 2016]
• Better translation quality than single-source NMT
• Requires source sentence manually translated into all other source

languages during inference

Multi-Source NMT English translation
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Can multilingual NMT benefit from synthetic 
sentences from auxiliary language?

我孙子市
Abiko

废物
waste

回收率
recycling rate

已达到
reached

40%

Source: Chinese

我孫子市
Abiko

の 廃棄物
waste

の リサイクル率
recycling rate

は 40% に 達した
reached

Auxiliary: Japanese

The recycling rate Chiba

Target: English

waste in Abiko has reached 40%

Generate



Can multilingual NMT benefit from synthetic 
sentences from an auxiliary language?
Improve multilingual NMT by incorporating synthetic sentences from 
an auxiliary language

How?
• Train a bi-source NMT model to leverage synthetic sentences from an 

auxiliary language
• Enable single-source and bi-source modes for flexible reference



Bi-Source Multilingual NMT: Model

English Source Chinese Source

Encoder Encoder

Attention

𝐻!" 𝐻#$𝐻%&'

Attention

+

Japanese Target

English Source Chinese Source

Encoder

Attention

𝐻!"(#$ 𝐻%&'

Japanese Target

Single-Encoder Multi-Encoder



Bi-Source Multilingual NMT: Synthetic Data 
Generation

English Source

Chinese Source

Multilingual NMT

Japanese Translation

German Source

For each sentence pair

French Source …



Bi-Source Multilingual NMT: Training

English Source

Chinese Source

Multilingual NMT

German Source French Source …

Randomly pick a triplet of source, target and auxiliary languages for 
each training batch

Japanese Translation



Bi-Source Multilingual NMT: Training

English Source

Chinese Source

• Randomly pick the source, target and auxiliary languages for each training batch
• Train the bi-source model to translate from the source and auxiliary languages to 

the target
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Bi-Source Multilingual NMT: Training

English Source

MASK

• Randomly pick the source, target and auxiliary languages for each training batch
• Train the bi-source model to translate from the source and auxiliary languages to 

the target
• Mask out the auxiliary sentence with probability 𝑝𝑚𝑎𝑠𝑘 to enable flexible 

inference
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Bi-Source Multilingual NMT: Inference

• Single-source inference
• Bi-source inference

English Source

MASK
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• Translate the source to an auxiliary language
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Can multilingual NMT benefit from synthetic 
sentences from an auxiliary language?
Improve multilingual NMT by incorporating synthetic sentences from 
an auxiliary language

How?
• Train a bi-source NMT model to leverage synthetic sentences from an 

auxiliary language
• Enable single-source and bi-source modes for flexible reference



Experimental Settings

• Datasets
• Chinese/English -> Japanese 

(in/out-of-domain performance)
• English -> X (10 languages)

• Baselines
• Bilingual baseline
• Multilingual baseline

high-resource

low-resource

English -> X



Bi-source model  + single-source inference 
improves over baselines
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Bi-source inference brings further 
improvements
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Bi-source inference improves the most on 
low-resource languages
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Bi-source inference helps disambiguate
word senses

↑

• Word Sense Disambiguation Test
Suite (MuCoW) [Raganato et 
al.,2019]
• Bi-source model + single-source 

inference outperforms 
multilingual baseline
• Bi-source model + bi-source 

inference achieves the highest 
coverage score



Improving Multilingual Neural Machine Translation with 
Auxiliary Source Languages

Contributions
• Bi-source multilingual NMT model that leverages a synthetic 

source sentence from an auxiliary language
• A novel training algorithm to enable flexible inference in single-

source or bi-source mode
• Bi-source model improves over multilingual baselines especially on 

low-resource languages

More results and analysis in the paper

Weijia Xu, Yuwei Yin, Shuming Ma, Dongdong Zhang, and Haoyang Huang - EMNLP 2021 


